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EXECUTIVE SUMMARY 

Pavement markings are an important traffic control device, enhancing both the safety and 

efficiency of various modes of transportation by aiding vehicles, bicyclists, and pedestrians in 

effectively navigating transportation networks. The importance of pavement markings continues 

to grow, as autonomous vehicles, which show great promise to improve mobility in 

transportation networks, utilize pavement markings detected through video feeds to help 

appropriately position themselves in the lane. Some pavement markings are required to be made 

of retroreflective materials to ensure their nighttime visibility, but they degrade because of 

vehicles passing over them and weathering. Transportation agencies must periodically assess the 

condition of these markings to ensure that they meet specifications. These evaluations are 

typically performed by using a handheld or mobile retroreflectometer, or through visual, 

qualitative assessment. Each of these existing methods has associated limitations, related to 

various factors such as safety, cost, time, and repeatability.  

A potential alternative is the use of mobile laser scanning (MLS) data. Many 

transportation agencies currently conduct surveys of roadways with MLS on a regular basis, and 

lidar intensity (return signal strength) data can be used to estimate the retroreflectivity of 

pavement markings in support of condition evaluations. In a recent project with the Oregon 

Department of Transportation (ODOT), the research team developed an automated method to 

extract linear lane markings from MLS data and to evaluate the retroreflectivity of those 

markings. In this PacTrans project, we built upon that effort to develop advanced techniques to 

handle more complex markings (e.g., pedestrian crosswalk markings, bicycle markings, and 

arrows) that were not considered in the previous ODOT project but nevertheless are still 

important for supporting mobility for multi-modal transportation.  
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Broadly, the proposed approach can be divided into three principal steps: road surface 

extraction, road marking extraction, and road marking classification. For road surface extraction, 

on the basis of the rich geometric information from a point cloud, ground filtering followed by 

slope filtering are applied to extract the road surface data that are likely to include road 

markings. Next, by using the radiometric information available (i.e., point cloud intensity), the 

extracted road surface point cloud data are rasterized into 2D to generate an intensity image. 

Otsu’s segmentation is subsequently used on this image to segment high-intensity pixels, likely 

representing road markings. Because the intensity values are sensitive to changes in the range 

and incidence angles, the segmentation initially includes some incorrect markings. To reduce 

those incorrect markings while preserving actual road markings, high-pass filtering and an 

iterative morphological bridge operation are applied. Finally, in road marking classification, 

common linear lane markings with lengths greater than a predefined threshold length are first 

segmented, and the remaining markings are then classified by using a template matching model. 

To generate training data for the matching process, we collected a set of templates from MLS 

data and also created additional synthetically modified data by using a data augmentation 

approach to account for a variety of marking conditions, such as different orientation, skewness, 

and scale.  

The developed algorithm was evaluated by using a variety of MLS data collected by 

ODOT’s current mobile lidar system, a Leica Pegasus:Two. Experiments demonstrated that the 

developed program outperformed our previous version of the road marking extraction tool 

(RoME v1.3- developed in previous research for ODOT) in speed, accuracy, and the types of 

markings that can be extracted.  The new algorithm was shown to be capable of extracting highly 
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curved and complex road markings while still significantly reducing false positive and false 

negative markings.  

By providing detailed information, including spatial coordinates and types of markings, 

the extracted road marking data will enable transportation agencies to use performance-based 

procedures to evaluate pavement marking quality. This, in turn, will support informed decision 

making by DOT management for effective resource allocation. Improved maintenance of 

pavement markings will also lead to improved mobility with technologies such as autonomous 

vehicles. 
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CHAPTER 1. Introduction 

Mobile lidar (ML, also called mobile laser scanning, MLS, or mobile terrestrial laser 

scanning, MTLS), hereafter referred to as MLS, systems can acquire detailed 3D data efficiently 

from a moving vehicle at highway speeds with traffic. Figure 1.1 shows an example of a mobile 

lidar system (Leica Pegasus:Two), which is currently operated by the Oregon Department of 

Transportation (ODOT). Lidar provides several benefits and, as a result, is being widely adopted 

by departments of transportation across the country (Olsen et al. 2013a&b, 2018).  One of the 

key benefits of lidar is the fact that the same lidar data set can be used by multiple people for a 

wide variety of applications, minimizing the need for multiple data collections.  This versatility 

has resulted in the phrase, “collect once, use many times” when discussing lidar.  Additionally, 

one can remotely survey a site from safe locations, minimizing the danger to field crews and the 

traveling public.  Lidar also enables a much more efficient and thorough field survey, 

minimizing the need for costly repeat visits to the site to collect information.  The reduction in 

field time and the ability to acquire data from the sides of the road with static lidar or at traffic 

speeds with mobile lidar provide significant safety benefits over typical surveying.  The 

comprehensive information provided by lidar greatly improves the detail in models used 

throughout the design process.  The additional information that is resolvable in lidar data enables 

topography and other features to be modeled at a higher level of detail and accuracy over 

traditional techniques.  The detailed, 3D virtual world encapsulated in a lidar point cloud 

provides personnel in the transportation agency with an enhanced understanding of the field 

conditions and variability throughout the site and, hence, reduces uncertainty in decision-making.  
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Figure 1.1. Mobile lidar system (Leica Pegasus:Two) owned and operated by Oregon DOT.   
 

An important feature of the mobile lidar system is georeferencing, i.e., the assignment of 

precise, 3D spatial coordinates in a defined coordinate system to each point in a lidar point cloud. 

Georeferencing can be completed directly with the combination of components included on the 

scanner (e.g., GNSS-aided inertial measurement systems); however, for highest accuracy 

applications, rigorous survey control points are often established. Color and intensity values are 

often provided with lidar data sets as additional attributes to accompany the X,Y, Z spatial 

coordinates of points (figures 1.2 and 1.3). In particular, intensity values are a measure of 

backscattered signal strength and contain information on surface characteristics, including 

reflectance (Olsen et al. 2018). 
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Figure 1.2 MLS point cloud mapped with RGB color values 

 

 
Figure 1.3 MLS intensity values.  Red, green, and blue points indicate high, intermediate, and 

low levels of intensity.  
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The raw intensity values are generally provided as uncalibrated digital numbers, and in 

addition to surface reflectance at the laser wavelength, they are also a function of several 

extraneous variables related to the environment, system, and acquisition parameters (Kashani et 

al. 2015).  Examples of these extraneous variables include laser range, incidence angle, receiver 

aperture, system transmittance, atmospheric transmittance, beam divergence, and transmitted 

laser power. A significant number of lidar intensity correction and radiometric calibration 

procedures have been developed with the goal of removing the effects of these environmental 

and system variables to provide values that better represent surface reflectance. Recent research 

has investigated the potential use of mobile lidar for retroreflectivity evaluation. For example, 

Che et al. (2019) developed and tested operational procedures to generate retroreflectivity data 

from ODOT’s mobile scanner. Figure 1.4 shows an example validation test of the estimated 

retroreflectivity values extracted from mobile scanner data using two profilers operating on the 

left lane and right lane, in which the lidar-derived retroreflectivity estimates provide a high 

degree of consistency with the ground truth retroflectivity. 
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Figure 1.4. Validation test of the estimated retroreflectivity with ground truth (Che et al., 2019) 

 

While the results of this previous work have demonstrated great promise, automated road 

marking extraction from MLS data has remained an open challenge because of variable noise 

and road conditions.  Several approaches have been developed but have generally been designed 

for new markings with minimal wear, rather than existing markings, and only tested over 

relatively short sections of roadway with minimal variance in highway geometry (Kumar et al. 

2014; Yu et al. 2014; Zhang et al. 2016; Soilán et al. 2017; Yang et al. 2018). To address this 

problem, the research team developed an efficient and robust lane marking extraction tool (Jung 

et al. 2019), which is now being actively used by ODOT to evaluate road marking conditions on 

the Oregon highway network. However, there are some limitations in using the tool because it 

was designed to extract only linear or smoothly curved lane markings. Also, transportation 

personnel have expressed increasing demands for classification of different types of road 
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markings. This research addressed these challenges by presenting a novel approach for efficient, 

reliable extraction and classification of complex road markings.  

The remainder of this report is organized as follows: Chapter 2 outlines the developed 

road marking extraction and classification methods in detail. Chapter 3 discusses a comparison 

of the use of single profiler versus dual profiler data and an evaluation of the robustness of the 

developed approach when used with a variety of MLS data sets. Chapter 4 introduces a 

development version of the graphical user interface for the road marking extraction tool. Chapter 

5 highlights the strengths and limitations of the developed approach and provides potential 

directions for future work. 
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CHAPTER 2. METHODS 

2.1. Overview 

The proposed approach can be divided into three principal steps: road surface extraction, 

road marking extraction, and road marking classification.  

For road surface extraction, ground filtering followed by slope filtering are applied by 

using the rich geometric information of a point cloud to extract the road surface, including road 

markings. Subsequently, the extracted road surface point cloud data are rasterized into 2D to 

generate an image using the radiometric intensity information.  

Otsu’s segmentation is performed on this image to segment high-intensity pixels, which 

are likely to represent road markings. However, the segmentation may include some incorrect 

markings (false positives) because the intensity values are sensitive to changes in the range and 

incidence angles. To reduce those false positives while preserving actual road markings, the road 

surface image is partitioned into a set of blocks along the road direction, and Otsu’s 

segmentation is applied for each partitioned block. Subsequently, a high-pass filtering and 

iterative morphological bridge operation is proposed to refine the segmented road markings.  

Lastly, for road marking classification, common linear lane markings with lengths greater 

than a predefined threshold length are first segmented, and then remaining markings are 

classified by using a template matching model. To generate training data for the matching 

process, we collected a set of templates from MLS data and also created additional synthetically 

modified data by using a data augmentation approach to account for a variety of marking 

conditions, such as different orientation, skewness, and scale. The consecutive steps of the 

proposed approach are shown in figure 2.1.  

 



 

8 

 

Figure 2.1. Key steps in the proposed road marking extraction and classification approach 
 

2.2. Road Surface Extraction  

Typically, the acquired MLS data include many points that are returned from various 

objects present within the scene (figure 2.1), making it difficult to separate road markings from 

other objects. To improve the detection rate of road markings as well as processing speed, it is 

desirable to first segment the ground surface points that are likely to include road markings. To 

that end, the 3D mobile lidar data are rasterized into a horizontal plane to generate a binary 

image that represents the occupied pixels containing at least one point within the cell area as 1 

and the others as 0. The trajectory data (i.e., path of the vehicle or, more specifically, mobile 

lidar unit) are also rasterized onto the same binary image. Subsequently, a morphological dilation 

operation is performed for the rasterized trajectory to identify the area within a user-defined 

distance from the trajectory. The points within the area are subsequently identified on the basis 
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of their projected location onto the image. Figure 2.3(a) shows a point cloud extracted by the 

proposed horizontal filtering.         

The extracted mobile lidar data may still include some non-ground points over the road 

surface that need to be further removed. To that end, the filtered points are clustered by using a 

Euclidean clustering algorithm (Ubbink, 2019), which ensures that the minimum distance 

between the clusters is greater than the predefined distance (∆). Subsequently, the segment with 

the largest number of points is extracted as a ground surface, as shown in figure 2.3(b). The 

Euclidean clustering may be time-consuming as the number of points increases. To speed up the 

process, we implemented a voxel-based subsampling process proposed by Jung et al. (2020), 

which organizes the point cloud into a regularized 3D grid cell and returns the centroid and 

indices for each point, allowing the number of point inputs to be greatly reduced. This is 

particularly useful for reducing the computational burden for the Euclidean distance clustering 

by balancing the point density between the sparse (far from the trajectory) and dense (near the 

trajectory) areas. 
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Figure 2.2 Original point cloud. 
 

  

(a) (b) 

Figure 2.3. Ground filtering: (a) horizontal and (b) vertical filtering. The red line indicates the 
MLS vehicle trajectory 
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The point cloud extracted by the horizontal and vertical filtering may still include some 

non-road objects, such as a sidewalk, a median, or some grass areas near the road surface. To 

remove the non-road objects, the ground points are rasterized into a 2D elevation image by using 

the z-values. Because the road surface tends to be relatively flat and smooth, a slope image is 

calculated from the elevation image by using a Sobel operator (Pan et al. 2019) to filter out the 

pixels with high slope values. The proposed slope filtering requires a predefined threshold value, 

which can vary depending on the condition of the road surface. Therefore, a dynamic 

thresholding strategy is proposed to account for the different road conditions.  

First, the trajectory is rasterized onto the slope image. A morphological dilation operation 

is applied to extract the area within one meter from the trajectory. Then, the average (𝜇𝜇) and 

standard deviation (𝑠𝑠) of the slope values within the area are calculated. Finally, the condition to 

remove the pixels (𝑝𝑝) with high slope values is defined as  

 
𝑝𝑝𝑖𝑖=1:𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 >  𝜇𝜇 + 𝜏𝜏 ∗ 𝑠𝑠      (2.1) 

 
where 𝑛𝑛 is the number of occupied pixels, and 𝜏𝜏 is the scale factor. Figure 2.4 illustrates an 

example of road surface extraction using the proposed slope filtering in which one can see that 

medians and grass areas in the sidewalk have been successfully removed.  
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(a) 

 

 
(b) 

Figure 2.4 Road surface extraction: (a) before and (b) after slope filtering 
 

2.3. Road Marking Extraction  

In this step, the extracted road surface is segmented into the road markings and other 

objects by using the intensity values. Because the intensity values are sensitive to changes in the 

range and incidence angles, applying a single threshold would lead to over- or under-

segmentation (Che et al. 2019). In the literature, a commonly used approach, which was also 

adopted in this study, is to partition the roadway into a set of blocks along the road direction and 

segment the road marking separately (Yang et al. 2018). The trajectory rasterized in the previous 

road surface extraction is used again to provide dilated binary images with a 5-m, disk-shaped 

structuring element to partition the road surface into smaller longitudinal blocks, as illustrated in 

figure 2.5. On each partitioned block, the road marking segmentation is performed separately by 

using Otsu’s segmentation, which calculates the histogram and finds the value that maximizes 

the variance between the clusters (Otsu et al. 1979). To increase the contrast of the markings 

against the surrounding pavement, a contrast-limited adaptive histogram equalization algorithm 
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is also applied. As a result, each intensity block is binarized into two groups: the high-intensity 

group that is likely to represent the road markings and the low-intensity group that represents 

other, non-road marking objects. 

 

Figure 2.5 Road marking extraction on partitioned road surface blocks  
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Road marking segmentation is a challenging task because of several factors that generate 

noise. For example, the MLS points returned from grass and soil surfaces tend to produce high-

intensity values because of the improved incidence angle, making it difficult to separate them 

from road markings (Kumar et al. 2014). As a result, the segmented road markings may include 

some false positives that also have high-intensity values. To address that, use of high-pass 

filtering (Cheng et al. 2016) is proposed, which greatly reduces false positives by highlighting 

only the pixels with abrupt changes in intensity values. Figure 2.6 shows the remaining pixels 

after high-pass filtering has been applied. Subsequently, a morphological closing operation (i.e., 

dilation followed by erosion) is performed to aggregate the fragmented potential road markings 

(figure 2.6a). The high-pass filtering tends to break down the correct road markings into smaller 

segments because of a halo effect. To address this problem, the fragmented road markings are 

reconstructed by iteratively applying a morphological bridge operation, which connects two 

neighbor objects on the binary image. Figure 2.6b depicts the road markings before and after the 

iterative bridge morphological operation has been applied.  
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(a) (b) 

Figure 2.6. Refinement of road markings using the morphological bridge operation: (a) before 
and (b) after refinement.  

 
2.4. Road Marking Classification  

In this step, the extracted road markings are classified by using a template matching 

method, which calculates the matching score between templates and the input image. We have 

collected a set of templates from the MLS data and markings images available online. Before 

template matching, the extracted markings are isolated by using a connected component analysis 

(Jung et al. 2014) and are evaluated to separate the lane markings by using two conditions. First, 

for each marking, an ellipse is fitted by computing the second-order moments, and the markings 

with a major axis greater than a predefined value (4 m was used in this study) are identified as 
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lane markings. Second, the markings with a width smaller than a predefined value (0.2 m was 

used in this study) are identified as lane markings. A morphological erosion operation is 

performed with a disk-shaped structuring element of 0.1 m, enabling the extraction of most of 

the lane markings from others.   

Once the lane markings have been separated, each remaining marking is resized by using 

a bilinear interpolation method to match the size with template images. Because the collection of 

template images is labor intensive and time consuming, a data augmentation technique is adopted 

(figure 2.7) in which the collected marking images are rotated and skewed by using an affine 

transformation to generate augmented template data. Next, the extracted and resized markings 

are input into a template matching model (Kroon, 2020) that calculates the normalized cross-

correlation on the basis of image texture. Figure 2.8 shows an example of the road markings 

classified by using the template matching method. Overall, the results demonstrated that the 

proposed approach effectively extracts and classifies six common types of road markings (i.e., 

pedestrian crosswalk, bike lane, car lane, and left arrow, straight arrow, and right arrow 

markings). In the example, however, note that some parts of crosswalk markings were 

misclassified as lane marking because they were worn-out or as straight arrows because of 

insufficient training data, indicating the need for future work to refine those results.   
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Figure 2.7. Template data collected from the MLS data and markings images available online 
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Figure 2.8. Augmented template data using an affine transformation 
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Figure 2.9 Classification of complex road markings in which each color represents a different 
type of road marking. 
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CHAPTER 3. RESULTS 

3.1. Evaluation of Single Profiler versus Dual Profiler Data 

Some recent MLS systems support a dual profiler configuration with two laser profilers 

to improve coverage across the scene. For example, ODOT’s MLS scanner operates in a dual 

profiler configuration with scanners pointed at -30° and +60° to the direction of travel. This 

means that one laser looks forward while the other looks in reverse. The dual profiler increases 

the point density and provides data from a greater variety of acquisition geometries. This work 

found that the dual profiler is particularly advantageous in capturing road markings distant from 

the lane in which the MLS system operates.  

However, a challenge with the dual profiler is that the same object captured in different 

profilers can represent intensity variations. Therefore, data from each profiler should be 

processed individually and merged later. The dynamic thresholding method presented in Chapter 

2 is particularly useful for processing multiple profiler data. Figure 3.1 evaluates the markings 

extracted from single profiler and dual profiler data, respectively. Both results show similar 

trends overall, but one can clearly see that the dual profiler results are more robust in preventing 

false negatives than the single profiler.   
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(a) (b) 

Figure 3.1 Road markings extracted from (a) single and (b) dual profiler data 
 

3.2. Evaluation of RoME v1.3 versus RoME v2.0 

This section provides comparative results of RoME v1.3, our previous version of the road 

marking extraction tool, and RoME v2.0, the updated version developed through this PacTrans 

project.  Several test data sets were used (table 3.1). Figures 3.2 through 3.6 include three 

images: (a) a rasterized point cloud with intensity values, (b) road markings extracted with 

RoME v1.3, and (c) those extracted with RoME v2.0. Note that RoME v1.3 divided the point 

cloud data into smaller sections (e.g., 10-m intervals) to extract smoothly curved lane markings, 

resulting in the extracted and combined lane markings being linearized in figures 3.2 through 3.6 

(b). Additionally, RoME v1.3 was not capable of extracting highly curved or complex markings 

and was also sensitive to some false positives (highlighted with red circles in figures 3.2 through 
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3.6 (b)) near the roadways. Figures 3.2 through 3.6 (c) demonstrate that these problems were 

successfully overcome by the enhanced program developed in this project, RoME v2.0. Further, 

RoME v2.0 can classify the extracted markings, which are denoted by different colors in figures 

3.3, 3.5, and 3.6. It is also important to note that RoME v2.0 is significantly faster than RoME 

v1.3, as shown in table 3.1.  

Table 3.1 Test data sets acquired by Oregon DOT’s MLS system (Leica Pegasus 2) 

No. Location Profiler  
configuration 

Number of points 
(millions) 

Length 
(meters) 

Process time (seconds) 
RoME  
v1.3 

RoME 
v2.0 

1 Spangler Dual 16.9 301.3 105.3 70.6 

2 Spangler Dual 15.8 546.7 199.3 153.0 

3 I-5 highway Single 19.1 1012.5 318.8 171.1 

4 Philomath Single 19.3 449.6 168.7 111.3 

5 Philomath Single 19.4 352.5 175.0 93.8 
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(a) (b) (c) 

Figure 3.2 Example road markings extracted from data set 1: (a) intensity image; (b) RoME 
v1.3; and (c) RoME v2.0 results  

 

   

(a) (b) (c) 

Figure 3.3 Example road markings extracted from data set 2: (a) intensity image; (b) RoME 
v1.3; and (c) RoME v2.0 results 
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(a) (b) (c) 

Figure 3.4 Example road markings extracted from data set 3: (a) intensity image; (b) RoME 
v1.3; and (c) RoME v2.0 results 

 

   

(a) (b) (c) 

Figure 3.5 Example road markings extracted from data set 4: (a) intensity image; (b) RoME 
v1.3; and (c) RoME v2.0 results 
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(a) (b) (c) 

Figure 3.6 Example road markings extracted from data set 5: (a) intensity image; (b) RoME 
v1.3; and (c) RoME v2.0 results   
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CHAPTER 4. ROAD MARKING EXTRACTION TOOL 

Figure 4.1 shows a beta version of the new road marking extraction tool (ver. 2.0). This 

tool is designed for maintenance personnel, engineers, and other authorities in transportation 

departments who need this information to help make appropriate decisions in evaluating road 

markings. The RoME v2.0 contains a simple interface that does not require users to have 

extensive knowledge of the program or point cloud data in order to run it successfully. The 

inputs to the program are the point cloud(s) in ASPRS LAS v1.2 format, which is the current 

version provided by ODOT, and trajectory (asciitrj) data obtained by a mobile lidar unit. The 

outputs include a road marking point cloud that can be utilized in many decision making 

processes and applications, such as retroreflectivity evaluations. At this time, road marking 

extraction has been tested and evaluated with ODOT’s current mobile lidar system (Leica 

Pegasus:Two) and may not produce correct results for other systems. The system is currently 

capable of classifying only pedestrian crosswalk, bike lane, car lane, left arrow, straight arrow, 

and right arrow markings. Users need to retrain the template-matching model to classify other 

types of road markings. Also, some features that were available in RoME 1.3, such as saving 

CSV files and retro-reflectivity evaluation, are currently not available.  These will be integrated 

into a future release.  
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Figure 4.1 Road Marking Extraction (RoME) tool v2.0 
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CHAPTER 5. CONCLUSIONS 

Pavement markings are an important traffic control device, enhancing both the safety and 

efficiency of various modes of transportation by aiding vehicles, bicyclists, and pedestrians in 

effectively navigating the transportation network. In this research, we developed advanced 

techniques to extract and classify complex markings (e.g., pedestrian crosswalk, bike lane, car 

lane, left arrow, straight arrow, and right arrow markings). Broadly, the proposed approach can 

be divided into three principal steps: road surface extraction, road marking extraction, and road 

marking classification.  

In the road surface extraction step, by using the geometric information of the point cloud 

and trajectory data, the road surface points that are likely to include road markings are 

segmented. Next, in the road marking extraction step, the road surface intensity values are 

rasterized into a 2D image in which Otsu’s method is used to segment high-intensity pixels as 

candidate road markings. Furthermore, to detect road markings in noise, dynamic thresholding 

segmentation and high-pass filtering approaches are applied. Finally, for road marking 

classification, a template matching is performed with augmented, pre-classified training data 

sets. Experimental results with a variety of MLS data sets demonstrated that the developed 

program successfully extracts highly curved and complex road markings, with significantly 

fewer false positives and false negatives than the previous version of the road marking extraction 

tool (RoME v1.3). The developed program includes a user-friendly graphic user interface that 

can be operated without extensive knowledge of the algorithms behind the scenes within the 

program. This program will support informed decision making by DOT management for 

improved maintenance of pavement markings, which will also lead to improved mobility with 

technologies such as autonomous vehicles. 
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There are some key recommendations to use the developed program effectively. The 

program has been tested and evaluated with ODOT’s MLS system (Leica Pegasus:Two) and will 

require some adjustment of settings to use data acquired with other systems. If dual profiler data 

are available, it is generally recommended to use them to reduce false negatives. The developed 

approach is currently capable of classifying pedestrian crosswalk, bike lane, car lane, left arrow, 

straight arrow, and right arrow markings. To classify other types of road markings, users will 

need to collect new data sets to retrain the template model. Also, other machine learning 

techniques, such as a convolutional neural network, could be integrated into the classification 

process; however, these techniques would require a much larger amount of training data to 

achieve good performance.  
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